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Abstract—Ageing populations are becoming a global
issue. Against this background, the assessment and
treatment of geriatric conditions have become increasingly
important. This study draws on the multisensory
integration of virtual reality (VR) devices in the field of
rehabilitation to assess brain function in young and old
people. The study is based on multimodal data generated
by combining high temporal resolution
electroencephalogram (EEG) and subjective scales and
behavioural indicators reflecting motor abilities. The phase
locking value (PLV) was chosen as an indicator of
functional connectivity (FC), and six brain regions, namely
LPFC, RPFC, LOL, ROL, LMC and RMC, were analysed. The
results showed a significant difference in the alpha band
on comparing the resting and task states in the younger
group. A significant difference between the two states in
the alpha and beta bands was observed when comparing
task states in the younger and older groups. Meanwhile,
this study affirms that advancing age significantly affects
human locomotor performance and also has a correlation
with cognitive level. The study proposes a novel accurate
and valid assessment method that offers new possibilities
for assessing and rehabilitating geriatric diseases. Thus,
this method has the potential to contribute to the field of
rehabilitation medicine.

Index Terms—EEG, multimodal data, rehabilitation
assessment, virtual reality
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I. INTRODUCTION
he ageing population is a universal phenomenon that has
profound implications for all aspects of human life.

According to the 2019 World Population Prospects report
released by the United Nations, the world’s population will
enter an unprecedented stage of ageing owing to the combined
effects of declining global fertility and increasing average life
expectancy, while population growth will experience a general
slowdown in the next decade. Overall, it is expected that by
2050, the global proportion of people aged 65 years or above
will rise from 9% in 2019 to 16% [1]. According to statistical

data from China’s National Bureau of Statistics, by the end of
2021, China’s population will be composed of 20.56 million
people aged 65 and above, accounting for 14.2% of the
country’s population [2]. As population ageing intensifies,
medical insurance systems for the elderly face serious
challenges. Of the 293 diseases covered by the Global Burden
of Disease (GBD), 92 (31.4%) are identified as age-related,
including a variety of infectious diseases, trauma-based
diseases, non-communicable chronic diseases (cardiovascular
diseases, cancer, neurological diseases, etc.) and others [3].
Population ageing has multiplied the number of elderly people
suffering from related diseases, putting enormous pressure on
the state, society and families in various aspects such as
medical expenses and daily care. To reduce the multiple
pressures caused by an ageing population, more accurate
methods and tools are needed to assess diseases, provide help
at different stages of the diseases, reduce the prevalence of
diseases and mitigate the diseases as much as possible.

Nowadays, virtual reality (VR) is widely used in the field of
rehabilitation medicine, both in assessment and treatment [4].
The use of VR for the timely and accurate evaluation of a
subject’s condition allows for the phased adjustment of
rehabilitation training tasks, leading to better treatment
outcomes. The rehabilitation process is often long and arduous
for patients [5]. They need to make reasonable arrangements
in terms of time, while trained therapists are required to assist
them from the sidelines to achieve better rehabilitation results.
This puts an increased burden on both families and society.
Computer-based VR environments can not only respond to
different scenarios of rehabilitation but also provide timely
feedback [6]. Saposnik et al. found that rehabilitation training
incorporating VR helps stroke patients regain arm movement
[7]. VR is a form of rehabilitation that is not only of benefit to
the body but also to brain function and cognitive levels. Tan et
al. found that the use of specific stimulus scenarios enhances
the effectiveness of memory training in rehabilitation [8]. Park
et al. observed that VR-based cognitive-motor rehabilitation
could improve cognitive function in older adults better than
traditional cognitive rehabilitation [9]. Riaz et al. found that
VR-based environmental enrichment could stabilise cognitive
function in patients [10]. The immersive interaction that VR
provides by creating a multisensory simulation environment
can improve patient focus, motivation and initiative when
undergoing rehabilitation training. Hence, training outcomes
tend to be better with immersive VR compared with other
interventions, and multi-sensory engagement may be a
potential reason for this [11]. Given the multisensory
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integration of VR, the simultaneous involvement of multiple
brain regions in the study task, the ease of use and the strong
interactivity, VR technology was chosen for our experimental
design. With the increasing demand for specific and
personalised rehabilitation, more accurate appraisal tools are
needed. Therefore, combining VR technology with other
methods can allow better assessment and interpretation of the
physiological and psychological changes patients undergo
during rehabilitation.

Cognitive abilities can be classified into several specific
domains such as attention, memory, executive cognitive
function, language and visuospatial ability, each of which
declines significantly with age [12]. The diminishing of
sensorimotor functions, such as coordination difficulties,
reduced motor speed and balance difficulties, also occurs
widely with age [13]. Existing assessment methods include
both subjective assessment and objective measures. As a
simple, easy-to-understand and convenient method, scales are
suitable for individual and group diagnosis and facilitate the
collection of large amounts of data. They enable the
quantitative measurement of the subjective state of people,
which would be difficult to observe directly. Commonly used
cognitive scales include the Mini–Mental State Examination
(MMSE), Montreal Cognitive Assessment (MoCA) [14], the
Trail Making Test (TMT) and Wechsler Memory Scales
(WMS). These methods of appraisal using subjective scales
are simple and quick, but differences in education, cultural
background, examiner’s skill and experience in using the
scales, the examination setting, and the emotional and mental
state of the subject can all have an impact on the scores.
Qualitative assessment is not possible using scales only and is
subject to subjective influences.

Objective measures are mainly based on various techniques
of brain imaging, such as positron emission tomography (PET)
[15]. This is an imaging technique that captures cerebral blood
flow activity by measuring perfusion emission and uses
radioactive material to identify abnormalities in organ function.
The method can be used to measure deeper parts of the brain
with high sensitivity and precise localisation, but the imaging
process is long, the required system is expensive, and,
although largely harmless, it is limited by the dose of
radioactive material and should not be used frequently on the
same subject. Functional magnetic resonance imaging (fMRI)
[16] and functional near-infrared spectroscopy (fNIRS) [17]
are both functional brain-imaging techniques based on the
principle that neural activity in the brain causes local
haemodynamic changes. fMRI assesses brain activity by
detecting changes in blood flow [18]. Compared with PET,
fMRI does not use radioactive substances, involves less risk
and can be used multiple times on the same subject over a
short period. fMRI delivers high spatial resolution but low
temporal resolution, mainly owing to the physiological
changes that accompany the neural activity [19]. It also has the
disadvantage of being expensive, noisy, bulky and not easily
mobile and is not suitable for patients with claustrophobia.
fNIRS reflects brain activity by measuring changes in
oxyhaemoglobin (HbO2) and deoxyhaemoglobin (HbR). Its
advantages include high spatial localisation, low cost and
portability. It is not noisy, it is non-invasive and not
particularly sensitive to the subject’s movements during the

experiment. It can be used across all kinds of populations,
including infants and bedridden patients. Due to the slow and
delayed changes in blood oxygen metabolic activity, the
temporal resolution of fNIRS is approximately 100
milliseconds.

Electroencephalogram (EEG) offers new possibilities for
evaluation as a non-invasive, easily accessible method
providing high temporal resolution [20]. EEG measures the
electrical activity generated by the brain through electrodes
placed on the scalp and allows easy visualisation of brain
activity in the form of electrical signals, enabling the observer
to visualise the real brain activity behind human behaviour
[21]. EEG is cost-effective, easy to use, portable and
non-invasive and suitable for subjects of all ages. It is widely
used in cognitive-related neurological disorders such as
dementia [22] and Parkinson’s disease [23], as it directly
reflects the electrical activity of the central nervous system
and offers a higher temporal resolution than the other
techniques mentioned previously. However, the
aforementioned methods, whether subjective or objective,
only derive results from a single source of data and do not
allow for a comprehensive multi-faceted appraisal. The
treatment of geriatric diseases is a long-term process, and
more timely and accurate assessment methods are needed to
gain insights into the patient’s current rehabilitation status to
improve rehabilitation planning. The main challenge with
current multimodal data–based rehabilitation assessments
arises in the collection and analysis of data. Indicators that are
more representative of the condition to be assessed must be
selected and integrated to make the best use of their strengths.

This study uses VR to create immersive and interactive
virtual environments for the test subjects, drawing on the
multisensory integration of VR as much as possible, combined
with a Kinect device, to obtain behavioural data that allow a
visual representation of the subjects’ motor abilities. These
behavioural data are integrated with EEG data to obtain
objective measures. At the same time, this study also includes
the results of the scale used in the subjective appraisal. The
result is a combination of quantitative and qualitative,
objective and subjective data, aggregating information from
multiple sources to form multimodal data, thus providing a
comprehensive, accurate and valid evaluation method from a
variety of perspectives. Based on the results of the multimodal
data, it is hypothesised that cognitive levels decline with age,
as does motor ability, represented by behavioural indicators,
and that brain function is also affected by age. These findings
provide evidence for cognitive decline and offer a new method
of assessment. Using this assessment method, multiple data
are used to accurately assess the subjects’ current condition
and can provide guidance for rehabilitation intervention
strategies. Through timely and accurate evaluation, we can
make suggestions for disease prevention, complement medical
interventions with technology during the disease phase,
manage the condition promptly, continuously monitor
patients’ recovery and assist with rehabilitation. At the same
time, it allows for a new way of designing rehabilitation
products for the elderly.
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II. MATERIALS AND METHODS

A. Participants

Forty volunteers were recruited from Shandong University
in two age groups, 16 of whom were elderly (age: 60.31 ±
7.021 years) and 24 of whom were young (age: 20.13±0.797
years). The subjects’ basic personal information such as age,
height and weight were recorded before the test, and their
cognitive abilities were quickly assessed using the MoCA
scale. Table I shows the subjects' personal information. The
inclusion criteria included the following: (1) no traumatic
brain injury, (2) not suffering from any neurological disease,
(3) no recent medications related to neurological effects, (4)
no visual impairment, (5) adequate sleep during the week
before the experiment, and (6) no motor impairment. The
results of the MoCA scale ranged from 16 to 30 points. A total
of 32 subjects were judged to be cognitively normal (scores of
26 points and above), and 8 were abnormal (scores below 26
points), with the abnormalities occurring in the elderly group.
All experiments were conducted after receiving the informed
consent of the subjects. The experimental procedures were
authorised by the Human Ethics Committee of Shandong
University and met the ethical standards set out in the Helsinki
Declaration of 1975 (revised in 1983).

B. Experimental Equipment
EEG, VR and motion capture equipment were used in the

experiment.
ANT Neuro’s next-generation EEG/ERP recording and

analysis system, eego™ mylab, was used to acquire the EEG
data. The three products included in the system, namely
waveguard™original cap, the eego™ amplifier and the eego™
software, were all utilised. The waveguard™original EEG cap
based on the five percent electrode system was used. This
electrode placement scheme is an extension of the 10/20 and
10/10 systems. Figure 1 shows the channel position of EEG.
After 32 channels of electrode caps were selected, data
acquisition was performed using the eego™ software, and the
sampling frequency was 1000 Hz. The eego™ amplifier uses
active shielding technology to ensure signal quality during the
acquisition process. In previous studies, the ANT Neuro range
of products was applied to assess the correlation between
levels of vigilance [24] and to evaluate the correlation between
the effects of continuous theta-burst stimulation on motor
evoked potentials [25].

The Oculus Quest 2 was chosen as the VR device. The
Oculus Quest 2 is a wireless all-in-one VR device, weighing
503 g, with a built-in Android core, powered by the
Qualcomm Snapdragon XR2 platform and an integrated

engine for visual analytics. It has a monocular resolution of
1832 x 1920, supports 60, 72 and 90 Hz refresh rates and
enables controller-free gesture tracking. The device supports a
large number of games and contains different categories. After
testing, we chose for our experimental task the game Beat
Saber, where the gamepad is used to cut through two coloured
squares with music and which requires large continuous
movements of the upper limbs. This game takes full advantage
of the multi-sensory engagement of VR to better assess and
train subjects’ cognitive levels. On the visual side, subjects
can see different-coloured squares in the immersive
environment, and by judging the colours, their cognitive skills
can be trained. On the auditory side, subjects can hear music,
and the speed of the game varies with the speed of the music.
This stimulates the brain, enhancing their attention and
reflecting the differences in cognitive levels more fully. In
terms of movement, both speed and the left and right hands
corresponding to different colours affected the subjects’
behaviour, helping to make a better assessment and showing
the effect of cognitive level and age on behavioural ability.

Microsoft’s Kinect V2 that uses infrared light to track
multiple parts of the body in real-time was chosen as the
motion capture device. Kinect V2 supports up to 25 skeleton
nodes, and nodes numbered 1–11 and 20–24 were selected for
the analysis of upper-limb data. The data object type was
provided in the form of skeleton frames. Each frame can hold
up to the maximum number of supported bone points.

C. Experimental Procedure
Before the experiment, each subject was shown a video of

the game to make sure they understood the rules and were
ready for the test. The subject was equipped with an EEG
acquisition device, and a conductive paste was injected into
the electrode cap to reduce impedance until all channels were
shown in green on the software page. After the subject had
relaxed in a chair and the researchers had ensured that the
subject’s upper limb movements were recognised by the
motion capture device, the experiment was begun.

The experiment was divided into two parts: the resting state
and the task state, with each lasting for 15 minutes.

The first 15 minutes were spent in the resting state, where

Fig. 1. The channel position of EEG.

TABLE I
SUBJECTS’ PERSONAL INFORMATION

Parameter Elderly Group Young Group P-value
Female sex 37.5% 50% /
Age (years) 60.31 ±7.021 20.13 ±0.797 <0.001*
Height (cm) 164.56 ±5.738 172.13 ±6.980 0.001*
Weight (kg) 63.44 ±8.107 63.21 ±10.871 0.943
MoCA score 24.56 ±3.425 27.75 ±1.225 0.002*
* indicates significant correlation at the 0.05 level.
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the subject was asked to remain still in the chair in a natural,
relaxed, non-sleeping state while EEG data were collected
through electrode caps. The surrounding environment was
kept quiet during the experiment. External disturbances were
kept to a minimum to minimise abnormal fluctuations in the
subject’s brain waves.

After 15 minutes, the subject was put in the task state,
where a VR device was added to the electrode cap and the

Kinect device was switched on to capture upper
limb–movement data. The subject was asked to play Beat
Saber, a continuous VR game, for 15 minutes. To ensure that
the data collected was not affected by other factors, the game
was set to the same music, at the highest difficulty level, with
an automatic restart mode in the event of failure. Figure 2
shows the experimental procedure.

D. EEG Data Pre-Processing
The EEG signal is a random signal that varies over time and

has a small amplitude. It is highly susceptible to interference
from other signals unrelated to brain activity, known as
artefacts. These mainly include oculogram artefacts, blink
artefacts, eye-movement artefacts, myoelectric artefacts,
cardiac artefacts, DC offsets and industrial frequency
interference. To remove these artefacts, a triple filtering and
independent component analysis (ICA) method was used.
Before filtering, channel localisation and a re-reference were
carried out. The re-referencing method considered the average
reference, which takes the average of all electrode potentials
after the acquisition as the reference signal and is equivalent to
artificially constructing a zero potential point as the reference
electrode. A high-pass filter with a cut-off frequency of 1 Hz
was first chosen to eliminate baseline drift. To stop
interference from high-frequency signals such as myoelectric
artefacts and ensure that the fast waves in the EEG signal were
not affected, a low-pass filter with a cut-off frequency of 40
Hz was selected for the second filtering. For the third filtering,
a notch filter at 49–51 Hz was used to remove industrial
frequency interference. ICA was then performed to eliminate
artefacts embedded in the data without removing the affected
part of the data. ICA separates the linear mixed signals
generated by multiple source signals into independent signals
that are uncorrelated and non-Gaussian, thus separating the n
source components from the EEG signal channels. As shown
in (1), ICA finds a component ‘unmixing’ matrix (W) that,
when multiplied by the original data (X), yields the matrix (U)
of IC time courses. In (2), the whole data (X) is the sum of the
ICs (Xi) [26]. Finally, the artefacts were identified and
removed with the help of the ADJUST algorithm, which is a
completely automatic method for the detection of artefacted
ICs from EEG data. For each feature contained in the detectors,
the threshold value was calculated using a fully automated
image processing thresholding algorithm based on the
expectation-maximisation (EM) technique [27]. Equation (3)
captures how the algorithm recognises eye movements. The
above-mentioned pre-processing operations were performed
using the open-source toolkit EEGLAB based on MATLAB
(The MathWorks, Inc, Natick, Massachusetts, USA) [28].

 WXU  (1)

n,2,1whereXX i  i (2)

Fig. 2. The experimental procedure.
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where trim_and_max( … )i indicates the maximum of the
trimmed vector of variance values over the epochs, and
trim_and_mean( … )i denotes the average across epochs
computed after the top 1% of the values have been removed
[27].

An item of data was selected, and multiple events were
inserted into it, with 80 seconds between events. The period
from the first 40 seconds to the last 40 seconds of each event
was taken as an epoch. These epochs were superimposed and
averaged. Nave indicates the number of epochs, and Nave =
10 means that 10 epochs were involved in the superimposing
and averaging. The global field power is the standard
deviation of the electrical activity on all electrodes. Figures
3,4, and 5 visualise the electrical activity of the brain.

E. Functional Connectivity
Based on the pre-processing of eighty pieces of EEG data,

the functional connectivity (FC) between six brain regions,

namely the left prefrontal cortex (LPFC), right prefrontal
cortex (RPFC), left motor cortex (LMC), right motor cortex
(RMC), left occipital lobe (LOL) and right occipital lobe
(ROL), was calculated using the MNE -Connectivity library in
Python [29].

The signal connectivity between channels was calculated
using the spectral_connectivity_epochs method. As shown in
(4), the phase locking value (PLV) was chosen as a measure of
connectivity. This method uses responses to a repeated
stimulus and looks for latencies at which the phase difference
between the signals varies little across trials (phase locking)
[30]. Fourier was chosen as the method for spectral estimation.
The sampling frequency was fixed at 1000 Hz. The frequency
bands of interest were alpha waves at 8–12 Hz frequency
range and beta waves at 12–40 Hz frequency range. All 22
channels in the six brain regions were selected, and by varying
the indices parameter, inter-signal connectivity was obtained
for all channels between each of the six brain regions. The
final FC metric was obtained by averaging the data between
each of the six brain regions to get 15 values in each
frequency band, for a total of 30 values in the three frequency
bands.

|]
||

[ E |PLV
Sxy
Sxy

 (4)

E[ ] denotes the average over epochs. The connectivity
method is based on estimates of the cross- and power-spectral
densities (CSD/PSD) Sxy and Sxx, Syy [29].

F. Extraction of Kinect Data Metrics
Using Python to read the .json file generated by the Kinect

device and obtain the corresponding points of the upper limb,
we calculated eight behavioural metrics: overall upper-limb
velocity, the standard deviation of upper-limb velocity,
median upper-limb velocity, overall upper-limb acceleration,
the standard deviation of overall upper-limb acceleration,
average left arm movement angle, discrete stability ratio and
continuous stability ratio. Table II explains the meaning of
behavioral indicators.

Fig. 3. All 32 channels of voltage activity.

Fig. 4. One of the channel voltage activities.

Fig. 5. Global field power for all channels.
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Fig. 7. Correlation between brain regions.

G. Statistical Analyses
For the FC, a one-way ANOVA test was performed on the

data from the task and resting states within the group, using
age as the basis for grouping, to explore the effect of state on
the FC of brain areas. An independent samples t-test was
performed on the younger and older groups within the group,
using the state as the basis for grouping, to investigate the
effect of age on the FC of brain regions. For the Kinect data
metrics, a one-way ANOVA test was used on the overall data
to analyse whether age has a significant effect on behaviour,
using eight behavioural indicators as dependent variables and
age group as a factor. Pearson correlation analyses were
conducted on behaviour, cognitive level, age and FC. The
statistical significance level (P) was set to 0.05 for all
analyses.

III. RESULTS

A. Functional Connectivity Results
Independent samples t-tests were used to compare the task

states pertaining to the younger and older groups. In the alpha
band, the PLV values of brain regions LPFC–LMC (F = 1.530,
P = 0.040), LPFC–LOL (F = 0.031, P = 0.040), RPFC–RMC
(F = 0.949, P = 0.037), LMC–RMC (F = 0.934, P = 0.042),
LMC–LOL (F = 6.698, P = 0.027) and RMC–LOL (F = 1.091,
P = 0.043) were significantly higher in the elderly than those
in the young. In the beta band, the PLV values of brain regions
LPFC–LMC (F = 1.043, P = 0.028), LPFC–RMC (F = 1.153,
P = 0.035), RPFC–RMC (F = 1.445, P = 0.034) and
RMC–ROL (F = 1.272, P = 0.041) were significantly higher in
the elderly than those in the young.

In a one-way ANOVA test for resting and task states in the
younger group, the PLV values of brain regions LPFC–RPFC
(F = 4.705, P = 0.035), LPFC–RMC (F = 4.724, P = 0.035),
RPFC–LMC (F = 5.439, P = 0.024), RPFC–LOL (F = 4.447,
P = 0.040), RPFC–ROL (F = 5.991, P = 0.018), LMC–LOL
(F = 4.087, P = 0.049), LMC–ROL (F = 5.214, P = 0.027)
and RMC–ROL (F = 4.611, P = 0.037) were significantly
higher in the resting state than those in the task state in the
alpha band.

As shown in Figure 6, when the FC indicator, PLV, is
between 0 and 1, the closer the PLV is to 1, the closer the two

Fig. 6. FC demonstration of 22 channels of one item of task state data.

TABLE I I
MEANING OF BEHAVIOURAL INDICATORS

Number Indicator Meaning
1 Overall upper-limb

speed
Overall upper-limb velocity

kinematic posture
2 The standard deviation

of upper-limb speed
Degree of upper-limb velocity

deviation
3 Median upper-limb

velocity
Upper-limb motion level

representation
4 Overall upper-limb

acceleration
Overall upper-limb

acceleration
5 The standard deviation

of overall upper-limb
acceleration

Upper-limb acceleration
deviation

6 The left-arm mean angle
of motion

Left-arm motion flexibility

7 Discrete stability ratio Overall upper-limb motion
stability

8 Continuous stability
ratio

Continuous stability of
upper-limb movements
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signals are to synchronisation and stronger the connectivity is.
Figure 7 shows the correlation of brain regions in three

conditions, (a) in the alpha band, comparison of task states in
the younger and older groups, (b) in the beta band, comparison
of task states in the younger and older groups, and (c) in the
alpha band, comparison of resting and task states in the
younger group.

B. Kinect Results
In terms of overall upper-limb speed (F = 1.028, P <0.001),

median upper-limb velocity (F = 0.415, P <0.001) and overall
upper-limb acceleration (F = 2.731, P <0.001), the younger
group was significantly higher than the older group. Figure 8
shows the results of the analysis of the behavioral indicators.

C. Correlation Results
Overall upper-limb speed (r = 0.353, P = 0.026), median

upper-limb velocity (r = 0.365, P = 0.021), and overall
upper-limb acceleration (r = 0.338, P = 0.033) were
significantly correlated with cognitive level. In the alpha band,
the FC in brain regions LPFC–LOL (r = 0.225, P = 0.045) and
LMC–LOL (r = 0.239, P = 0.033) were significantly
correlated with age. A significant correlation was also
observed between functional connectivity and behavioural
indicators. In the alpha band, the FC of LPFC–LMC was
significantly correlated with continuous stability ratio (r =
0.326, P = 0.040), and the FC of RPFC–RMC was
significantly correlated with the standard deviation of
overall-upper limb acceleration (r = 0.318, P = 0.046).

IV. DISCUSSION
This study assessed the effects of age on brain function in

terms of brain FC, cognitive level and behavioural
performance. The prefrontal cortex is closely associated with
higher cognitive functions in humans [31]. In concert with
other brain structures, the prefrontal cortex plays an
important role in attention, perception, motivation, planning,
sustained behaviour, working memory, language, control of
interference and executive functions [32]. The area of the
cerebral cortex associated with the emergence of movement
is known as the motor area, and the stimulation of this area
causes muscle movement in various parts of the body. The
occipital lobe is the most dominant visual cortex, and
damage to the occipital lobe results in not only visual
impairment but also symptoms such as memory deficit and
motor perception impairment. FC measures reveal statistical
dependencies between the activity patterns of anatomically
separated brain regions and are often used to assess the
functional relationships between brain regions [33]. In this
study, PLV was chosen as an indicator of FC [34], with the
former reflecting the overall convergence of the phase
difference between two real signals.

The results of the brain FC between the young and elderly
groups for the task state showed that in the alpha band, the
PLV values between the six brain regions were significantly
higher in the elderly group than those in the young group. In
the beta band, four groups of inter-brain interval PLV values

were significantly higher in the older group than those in the
younger group. We suggest that this change in FC may be due
to ageing and also correlates with cognitive level. When a
person engages in a conscious visual activity or intense
thinking exercise, the alpha rhythm decreases, and there is a

Fig. 8. Comparison of data on behavioural indicators between the
elderly and the young groups.
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corresponding increase in high-frequency, low-amplitude
beta waves. Ageing affects many aspects of brain structure
and function and is associated with cognitive decline [35].
The brain age gap is a better predictor of cognitive decline in
subjects than their actual age [36]. Previous studies have
shown that cognitive decline with age is evidenced by a
significant increase in theta and alpha1 bandwidths, an
increase in the theta-beta differential [37], and an increase in
relative theta power in the posterior quadrant [38].
Neurological measures of quantitative electroencephalogram
(QEEG) have been found to be a sensitive indicator of the
degree of cognitive impairment, with previous research
showing that cognitive decline is reflected in increased
absolute and relative power in the theta band and increased
power in the delta band during the later stages of
deterioration [39]. Claus et al. found that higher theta values
in the frontocentral and parieto-occipital regions were
significantly associated with a decline in the overall
cognitive function [40]. Koyama et al. observed significantly
higher relative beta power in older subjects [41]. Many of the
brain’s higher cognitive functions rely on the synergy
between different brain regions rather than being reliant on
just a specific brain region. FC is commonly used as a
measure of brain function. Previous research has shown that
subjects with age-related frailty exhibit reduced FC between
posterior regions of the parietal cortex [34]. Zhao et al. found
differences in the strength of dynamic FC in the left anterior
wedge, default mode network and dorsal attentional network
between normal controls, amnestic mild cognitive
impairment (aMCI) patients and Alzheimer's disease (AD)
patients [42]. Chen et al. identified that dynamic FC in
individuals with subjective cognitive decline showed a
significant correlation with cognitive performance [43]. The
EEG signal is a highly stochastic physiological signal with a
wide variety of rhythms, and a variety of different emotions
and states of mind can affect the changes in brain waves. As
with others, our results reflect the influence of age and
cognitive level on brain function, but the subtle differences in
the significance of the various frequency bands and brain
regions demonstrated may be influenced by the experiment,
the imaging technique and the FC metrics selected.

The results of FC in the resting and task states of the
young group showed that the PLV values between the eight
brain regions were significantly higher in the resting state
than those in the task state in the alpha band. We suggest that
this difference in FC between the resting and task states is
due to VR incorporation and limb movements. In this study,
VR was used for the experiment, and a game was chosen that
could reflect the cognitive level of the subjects to a certain
extent, aided by the acquisition of other data such as
behavioural data. VR is widely used in the field of
rehabilitation, and in addition to multi-sensory stimulation,
the computer programme can be set up in such a way that the
subject’s condition can be acquired in time and the difficulty
of the training and the training programme can be adjusted
accordingly, bringing about better rehabilitation outcomes.
Scenes in VR cause different stimulations of brain electrical
activity in humans [8]. The study shows that the FC between
the core cortex of the mirror neuron system and the
sensorimotor cortex is significantly enhanced in the

first-person view of VR scenes [44]. Alpha waves, with a
frequency of 8–12 Hz, represent the predominant waveform
in adults in the quiet, closed-eye state and are associated with
human attention, emotion, cognition and awareness. Alpha
waves are most pronounced in the parietal and occipital
regions, and are suppressed in the presence of external
stimuli. Since the resting state was followed by a short rest
period of a few minutes only before the task state was
initiated, the subjects may have experienced fatigue, thus
affecting EEG activity.

In the analysis of the EEG data, besides the significant
differences presented previously, we found that the results of
FC showed very significant individual variability within the
same group. Furthermore, in the beta band, the mean FC
values for the region LPFC–RPFC as well as LMC–ROL
were lower in the older group than those in the younger
group, although this difference was not significant.

Behavioural data from the younger and elderly groups
showed that the younger group scored significantly higher
than the elderly group in overall upper-limb velocity, median
upper-limb velocity and overall upper-limb acceleration.
There is a widespread decrease in sensorimotor function with
age. A weakening of cognitive abilities can also lead to a
reduction in motor ability [45]. We believe that this may
account for the obtaining of this result. Pearson correlation
analyses showed significant correlations between FC, motor
ability, cognitive level and age, validating the multimodal
approach to combining data.

The current study has several limitations. The population
included in this study was selected based only on age and
cognitive differences and generally represented a relatively
healthy group of people. Regarding EEG data pre-processing,
the strong subjectivity of identifying artefacts might have
had some impact on the results.

V. CONCLUSION
In this study, the subjects’ brain signals in the resting and

task states were monitored using EEG, and VR was utilised
for the experimental design. Drawing on the multimodal data,
brain function was assessed more fully from multiple
perspectives, including subjective and objective. The results
show that VR stimulation of the brain leads to changes in FC.
When comparing the younger and elderly groups, it was found
that a significant decline in sensorimotor ability along with
ageing and declining cognitive levels leads to changes in
functional brain connectivity. These findings contribute to a
new and valid assessment method that could be useful in the
field of rehabilitation medicine. The multimodal data–based
rehabilitation assessment method proposed in this paper
combines measures of VR, behavioural indicators, subjective
scales and EEG activity, fully combining their strengths. The
use of data from multiple sources allows for a more accurate
identification of a patient’s condition and facilitates timely
adjustment of rehabilitation training programmes, which offer
assistance in the field of rehabilitation medicine.

In future research schemes, based on the consideration of
the application of this method in rehabilitation medicine, the
selection of subjects could be expanded to include those with
neurological disorders such as AD and stroke. Meanwhile,
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other signal processing methods to improve data accuracy
could be used, such as canonical correlation analysis and
short-time Fourier transform.
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